The Great Lakes Fisheries Leadership Institute

Introduction to Fisheries
Management

Daniel Hayes

Department of Fisheries and Wildlife

Michigan State University

What is Fisheries Management?

The manipulation of aquatic organisms (POPULATIONS), aquatic environments (HABITAT), and human users (PEOPLE) to produce sustained benefits for humanity (Nielsen 1999 in "Inland Fisheries Management in North America, edited by Kohler and Hubert)

• Because we are managing for human benefits, we need to decide what is "beneficial"

The Eight (Nine) Steps of Management

- 1. Set Goals
- 2. Examine the Resource
- 3. Analyze the Situation and Set Objectives
- 4. Prescribe Treatment
- 5. Organize Personnel and Resources
- 6. Implement
- 7. Evaluate
- 8. Maintain
- 9. Publish

1. Set Goals ◀ 2. Examine the Resource 3. Analyze the Situation and Set Objectives 4. Prescribe Treatment 5. Organize Personnel and Resources 6. Implement 7. Evaluate 8. Maintain

9. Publish

ritical Points For Public Involvement

What is "the" most critical step?

What is "the" most critical step?

Setting Goals and Objectives

Goals: Broad statement of desired outcome of management

Healthy ecosystem
Good fishing
Productive forest
Safe water

Evolution of Fishery Management Goals

Maximum utilization (fisheries are unlimited)

Maximum sustainable yield (MSY)

Optimum sustainable yield (OSY)

OSY + Healthy ecosystem/Biotic Integrity

Public Trust Doctrine

The Public Trust Doctrine is a common law doctrine. The essence of the Doctrine is the legal right of the public to use certain lands and waters. The right may be concurrent with private ownership. The legal interest of the public is not absolute; it is determined by a balancing of interests.

The rights of the public are vested in each **STATE** as owner and trustee of Trust lands. The Public Trust Doctrine arises from the fact that Trust lands are special in nature physically and legally. Historically, the public use of these waters and lands was crucial for sustenance, travel, and commerce.

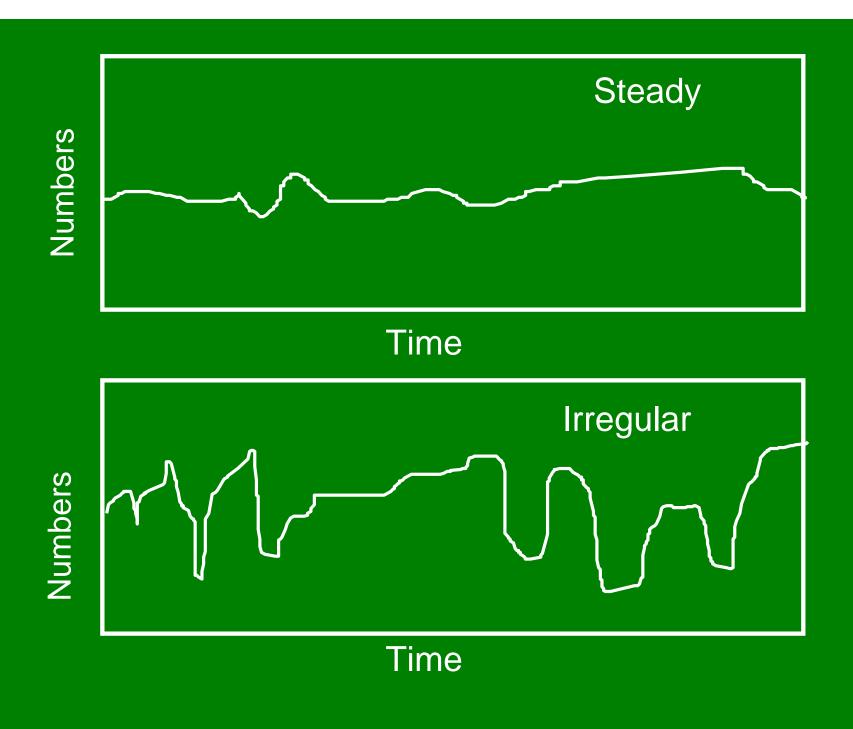
B. Black's Law Dictionary defines the public trust doctrine as a doctrine which, "Provides that submerged and submersible lands are preserved for public use in navigation, fishing, and recreation and the state, as trustee for the people, bears responsibility of preserving and protecting the right of the public to the use of the these lands and the waters above them for those purposes."

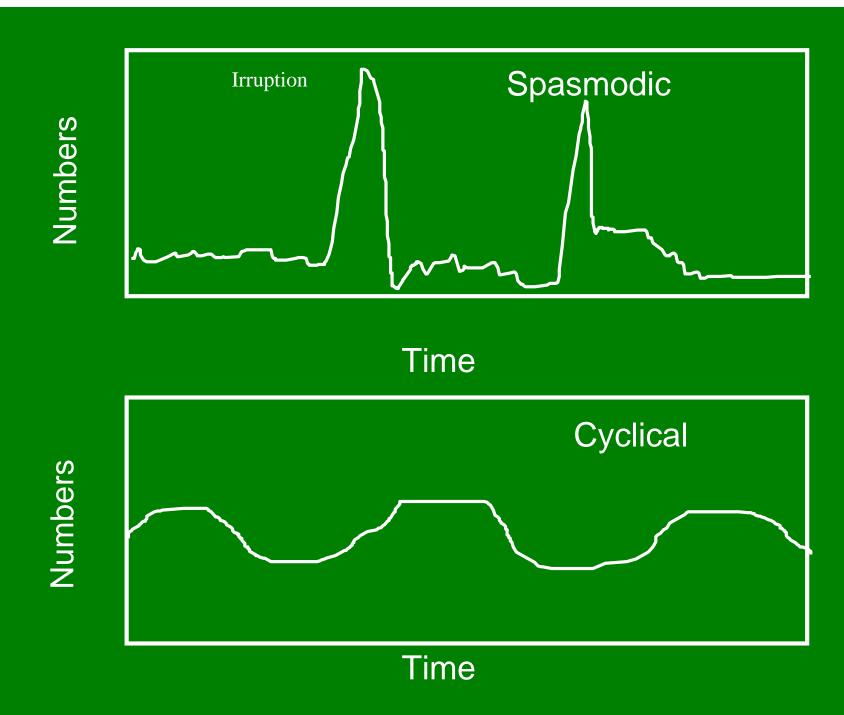
Fishery Management Objectives

- Specific
- Measurable
- Achievable
- Related to goal
- Time-constrained

Fishery Management Objectives

- "Better Fishing"
 - Not S, Marginally M, A, R, Not T
- Increase catch rates of Chinook salmon
 - Marginally S, M, A, R, not T
- Increase average catch rates of Chinook salmon to 0.5 fish/hour or more by 2007
 - S, M, maybe A, R, T


Fishery Management Objectives

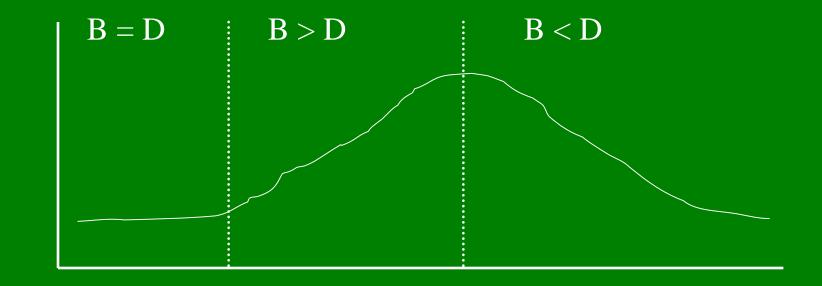

- Increase average catch rates of Chinook salmon to 0.5 fish/hour or more by 2007 by implementing bag limits
 - By adding the phrase "by implementing bag limits", we are mixing an objective with a method to achieve the objective
 - We don't want to do this because it constrains the way we think about achieving the objective

Fishery Management Tools

- Populations
 - Stocking
 - Fish Community Manipulation
- People
 - Fishing Regulations
 - Allocation issues
- Habitat
 - Wetland preservation
 - River restoration
 - Water quality management

Population Dynamics

Time


Thought Question

You stock a pond with 10 fish.

What factors would influence the population dynamics of this new population?

Factors affecting population

- Birth rate
- Death rate
- Immigration/Emigration

Time

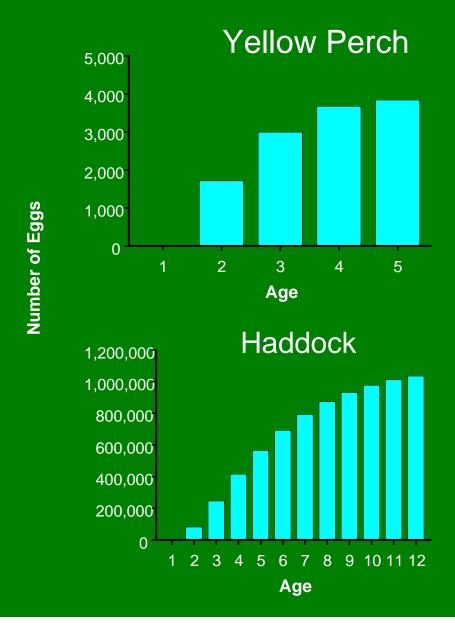
Factors affecting population

• Birth rate

- Sex Ratio
- Fecundity (number of eggs)
- Age structure
- Spawning habitat

• Death rate

- Predators (including people!)
- Environment
- Food Resources
- Age structure



Key Points

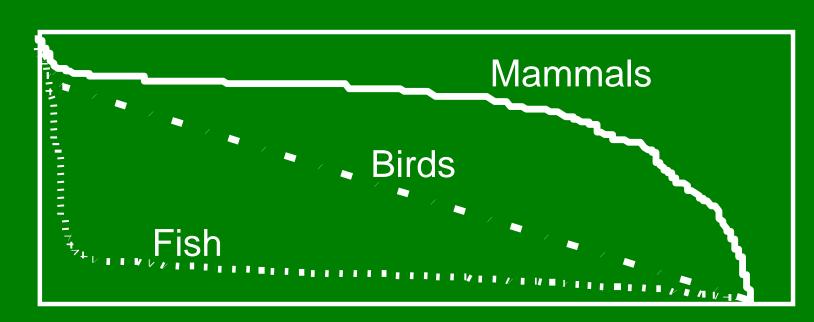
- What is the rate of increase when population is reduced
- What is the eventual number that is achieved
- How does the rate of increase and number achieved vary in response to the fishery, habitat changes, or changes in other aquatic populations?

Birth Rates

Birth Rates: Fecundity

Reproductive Guilds

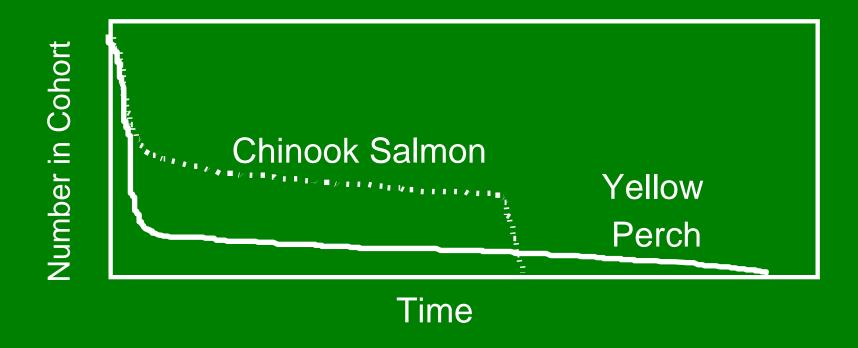
- A. Nonguarders
 - -open substrate spawners
 - -brood hiders
 - lots of small eggs
- B. Guarders
 - -substrate choosers
 - -nest spawners
 - -larger eggs
- C. Bearers
 - -external bearers
 - -internal bearers
 - -larger offspring

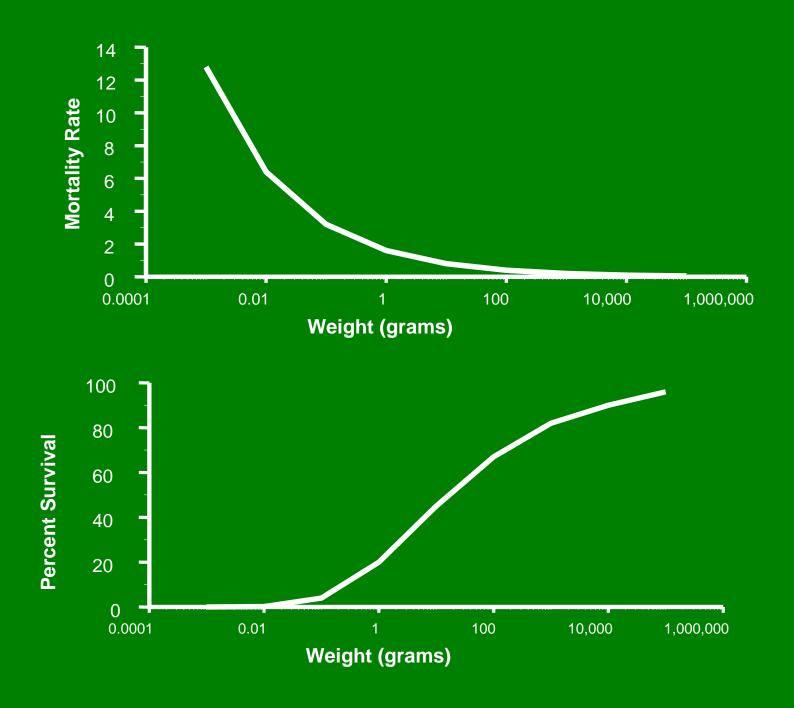

Hermaphroditism

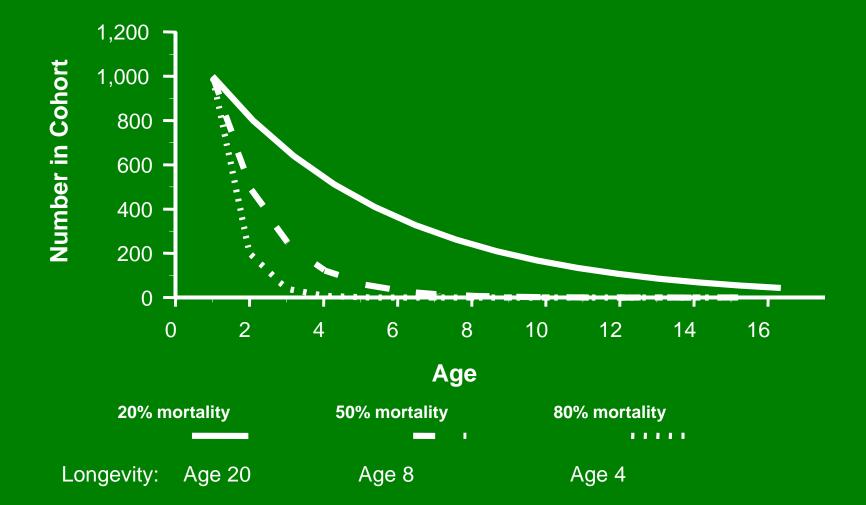
- Protandry
 - •Start life as a male, then become female
 - Sea basses and groupers
- Protogyny
 - •Start life as a female, then become male
 - Wrasses, parrot fish
- Self-fertilizing
 - •Simultaneously male and female
 - Sea basses and grouper

Parthenogenesis

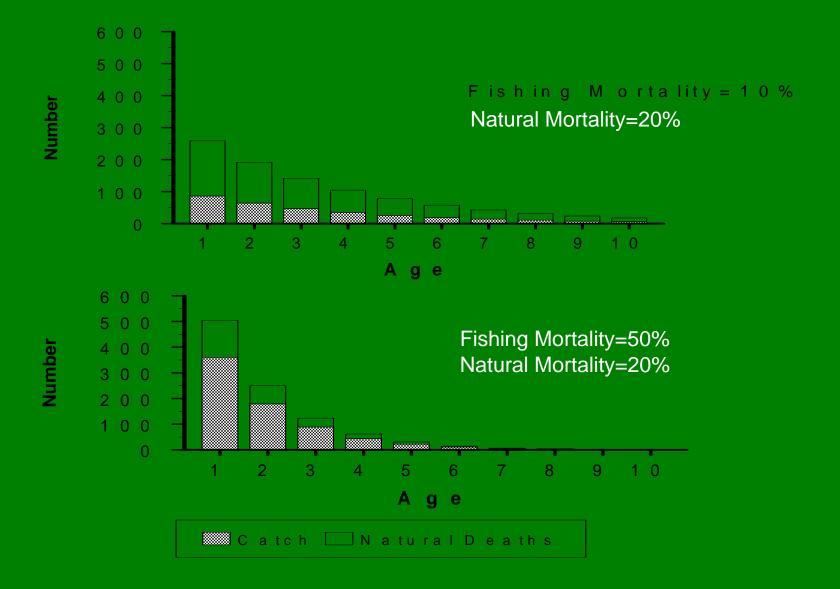
- Female only
- •Some mollies in this case, male is needed to initiate egg development but no gene transfer
- Very common in Cladocerans (Daphnia, or "water fleas")


Survival Rate


Time


Lifetime Changes in Size

	Birth Weight	Adult Weight	Ratio
Mammals	3,000 g	68,000 g	23
(Humans)			
Birds	50 g	1,100 g	22
(Mallard)			
Fish	0.001 g	300 g	300,000
(Yellow Perch)			


Chinook Salmon - Semelparous Yellow Perch - Iterparous

Natural Mortality=20% Fishing Mortality=10%

			Natural		Weight (g)	Yield (kg)
Age	Population	Catch	MortalityT	otal Deaths		
1	1000	86	173	259	67	5.8
2	741	64	128	192	483	30.9
3	549	47	95	142	1177	55.8
4	407	35	70	105	1968	69.1
5	301	26	52	78	2714	70.6
6	223	19	39	58	3354	64.7
7	165	14	29	43	3861	55.1
8	122	11	21	32	4269	45.2
9	91	8	16	24	4569	35.8
10	67	6	12	17	4803	27.9

Natural Mortality=20% Fishing Mortality=50%

			Natural		Weight (g)	Yield (kg)
Age	Population	Catch	Mortality	Total Deaths		
1	1000	360	144	503	67	24.1
2	497	179	71	250	483	86.2
3	247	89	35	124	1177	104.4
4	122	44	18	62	1968	86.7
5	61	22	9	31	2714	59.3
6	30	11	4	15	3354	36.4
7	15	5	2	8	3861	20.8
8	7	3	1	4	4269	11.4
9	4	1	1	2	4569	6.1
10	2	1	0	1	4803	3.2

438.6

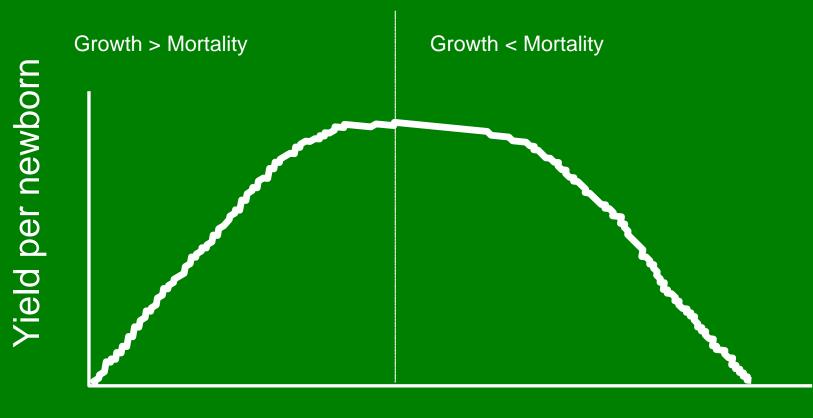
Natural Mortality=20% Fishing Mortality=20%

			Natural		Weight (g)	Yield (kg)
Age	Population	Catch	Mortality	Total Deaths		
1	1000	165	165	330	67	11.0
2	670	110	110	221	483	53.3
3	449	74	74	148	1177	87.2
4	301	50	50	99	1968	97.7
5	202	33	33	67	2714	90.3
6	135	22	22	45	3354	74.8
7	91	15	15	30	3861	57.7
8	61	10	10	20	4269	42.8
9	41	7	7	13	4569	30.7
10	27	5	5	9	4803	21.6

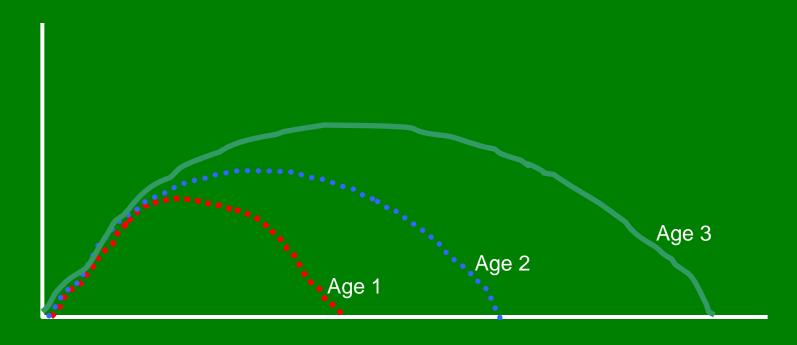
567.3

Natural Mortality=20% Fishing Mortality=50% beginning at age 3

		Natural			weight (g)	Yield (kg)
Age	Population	Catch	Mortality	Total Deaths		
1	1000	0	181	181	67	0.0
2	819	0	148	148	483	0.0
3	670	241	96	337	1177	283.8
4	333	120	48	168	1968	235.6
5	165	59	24	83	2714	161.3
6	82	30	12	41	3354	99.0
7	41	15	6	21	3861	56.6
8	20	7	3	10	4269	31.1
9	10	4	1	5	4569	16.5
10	5	2	1	3	4803	8.6

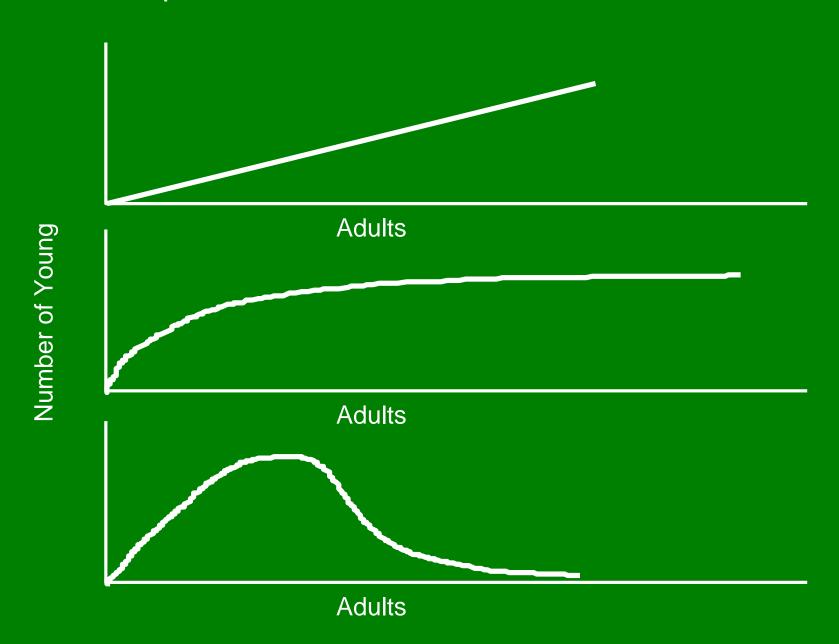

892.5

Fishing Mortality=50% beginning at age 7


			Natural		Weight (g)	Yield (kg)
Age	Population	Catch	Mortality	Total Deaths		
1	1000	0	181	181	67	0.0
2	819	0	148	148	483	0.0
3	670	0	122	122	1177	0.0
4	549	0	99	99	1968	0.0
5	449	0	81	81	2714	0.0
6	368	0	67	67	3354	0.0
7	301	108	43	152	3861	418.2
8	150	54	22	75	4269	229.6
9	74	27	11	37	4569	122.0
10	37	13	5	19	4803	63.7

833.5

Surplus Production



Fishing Effort

Effort

Reproduction Revisited: Stock and Recruitment

Integrating Population Dynamics with Fishery Management Tools

Populations

- Stocking increases births
- Fish Community Manipulation alters survival rate and age structure

People

- Fishing Regulations alters survival rate and age structure
- Allocation issues * Primarily a human issue*

Habitat

- Wetland preservation alters birth rate
- River restoration alters birth rate
- Water quality management alters birth rate and survival rate